根据锕系元素中的电子排列来预测哪种元素可以与氢协同构建理想的晶格,从而产生强烈的电子-声子相互作用,进而将这种固定程序推广到整个元素周期表的关键,便在于对大量实验数据的归纳总结。
毕竟刘峰的脑海中,并不缺少相应的实验数据,如果哪方面的实验数据不能支持这样的归纳,他可以在短时间内,模拟出很多。
只不过,虽然他的脑子能够存贮大量的实验数据,但是对这些数据的处理和将其完全记忆下来是两个不同的概念,很多时候,刘峰都必须借助到电脑以及相应的处理工具,才能非常直观地发现这些数据之间的必然联系。
这也是他经常一个人宅在寝室或者办公室里的原因。
只有对最终的结果有了一定的把握或者是思路,他才会真正的借助现实实验来进行验证。
因此,很多时候,在外人看来,刘峰设计的实验非常具有针对性,几乎没有多余的程序步骤,仿佛天生就是为了这个答案而存在的,就是因为这样的原因。
用答案来逆推过程,只要不是太low的人,费点精力都能做到,更不用说像他这般可以开挂的大学霸!
这一次,刘峰当然也不例外。
只不过,和超级对撞机的碰撞实验有所不同的是,元素周期表的各种元素和超导特性的关系,要更为繁复一些。
反物质工程涉及到的超级对撞机碰撞,只需要模拟高速质子和目标金属靶的碰撞就行,最多再增加一个高能激光的照射作用;然而,各种金属元素和非金属元素就有100多种,再加上这些元素不同的电子排列分布,最后导致的超导特性也各自迥异,即便有着超级大脑的刘峰,也在这些数据面前头疼不已。
还好元素与元素之间也有分类,如锕系元素、镧系元素等,虽然元素不同,但前人早就总结出了这些元素的相似性,这给站在巨人肩膀上的刘峰,不知道节约了多少精力。
同锕系元素被证明具有超导特性不同的是,其他元素是否具有超导特性还是个未知数。
因此,前者刘峰在查阅了文献后,很快就能模拟出来,一张纸一支笔,就可以开展研究,而后者,必须在无数次失败的实验当中总结经验。
刘峰在寝室里几乎宅了整整三天三夜的时间,将元素周期表的元素尝试了一个遍,他也只发现了58种元素具有超导特性;然而,这些元素的超导特性,似乎没有任何关联一般,几天的绞尽脑汁,几乎都要让他以为自己的方法是错误的!
索性在镧系元素上,最后给了他一个不大不小的惊喜,这才让他坚定了自己的想法。
因此,当下刘峰就暂时放下了对其他元素超导特性的研究,决定先把镧系元素的超导程序总结出来。
和锕系元素类似,镧系元素也能同其他元素协同构建理想的晶格,产生强烈的电子-声子相互作用,而且因为原子序数普遍比锕系元素靠前的缘故,在放射性和安全性方面更具有优势。
这一次,刘峰要做的实验,就包含了构建镧和镥两大最具有代表性的镧系元素氧化物的理想晶格。
幸运的是,他设计的实验配方中所需用到的材料,在实验室里都能找到,找不到的在隔壁的实验室也能借到。
只不过,和他借助异能在脑海中模拟实验不同的是,现实当中的实验,似乎未知的影响因素更多。
尽管刘峰自认为已经考虑得非常周全,但他仍然花了整整三天的时间,经过了无数次的失败,这才成功将两种元素制备成了具有立项晶格的合格氧化物——在灯光的照耀下,就像科幻电影当中散发着科幻气息的飞碟外壳。
这两种玩意儿看上去相似,就像是两块太阳能电池板,但都充满了金属质感。
表面看上去似乎也没有什么特别的地方,但放在扫描电子隧道显微镜下观察其微观构造,却与寻常的氢化物晶格天差地别,非要用两个字来形容的话——完美!
没有在这短暂的胜利喜悦中多做停留,刘峰趁热打铁,将两块镧系金属氧化物先后放在了事先准备好的实验仪器当中,开始了验证超导材料特性最关键的第二步——
环境模拟!
影响超导材料超导特性的环境,最常见的